This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 768936.

Temperature Optimisation for Low Temperature District Heating across Europe

Johan Desmedt, VITO/EnergyVille
Content

• Introduction
• H2020 TEMPO project
• Results
• Final words
Low network temperature

Benefits:

• Less heat losses
• Increased share of sustainable energy sources
• Increased efficiency of heat production technologies (heat pumps, cogeneration, boilers, etc.)

Source: IEA annex TS2
Low network temperature

By technological innovations:
• Digitalisation
• *Network* and *building* infrastructure optimization

By business models rewarding low return temperatures

By *consumer* commitment
• Awareness creation
• Involvement
Objectives

The H2020 TEMPO project will demonstrate the applicability of low temperature district heating through a **COMPREHENSIVE SOLUTION PACKAGE** including:

- technological innovations on the network and building side
- consumer empowerment enabled by digital solutions
- and innovative business model for EU replication.
TEMPO consortium

<table>
<thead>
<tr>
<th>Participant No</th>
<th>Participant organisation name</th>
<th>Participant short name</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (coordinator)</td>
<td>Vlaamse instelling voor technologisch onderzoek</td>
<td>VITO</td>
<td>Belgium</td>
</tr>
<tr>
<td>2</td>
<td>NODAIS AB</td>
<td>NODA</td>
<td>Sweden</td>
</tr>
<tr>
<td>3</td>
<td>AIT Austrian Institute of technology GmbH</td>
<td>AIT</td>
<td>Austria</td>
</tr>
<tr>
<td>4</td>
<td>Thermaflex International Holding bv</td>
<td>THF</td>
<td>The Netherlands</td>
</tr>
<tr>
<td>5</td>
<td>Steinbeis innovation GGMBH</td>
<td>Solites</td>
<td>Germany</td>
</tr>
<tr>
<td>6</td>
<td>Smet GWT nv</td>
<td>Smet</td>
<td>Belgium</td>
</tr>
<tr>
<td>7</td>
<td>Vattenfall Europe Wärme AG</td>
<td>Vattenfall</td>
<td>Germany</td>
</tr>
<tr>
<td>8</td>
<td>ENERPIPE GmbH</td>
<td>Enerpipe</td>
<td>Germany</td>
</tr>
<tr>
<td>9</td>
<td>A2A Calore & Servizi SLR</td>
<td>A2A</td>
<td>Italy</td>
</tr>
<tr>
<td>10</td>
<td>Hogskolan</td>
<td>Halmstad</td>
<td>HU</td>
</tr>
<tr>
<td>11</td>
<td>Euroheat & Power</td>
<td>EHP</td>
<td>Belgium</td>
</tr>
</tbody>
</table>
Demo 1: Windsbach, Germany - ENERPIPE

- Newly-built area – 50 houses TEMPO - 100 houses in total
- Low temperature district heating network
- Biogas fired cogeneration units
- Central and decentralised buffers Enerpipe
- Innovations: decentralised buffers and optimal control

www.tempo-dhc.eu
Demo 2: Brescia, Italy – A2A

- Existing high temperature network
- Stepwise reduction of network temperatures
- Main constraints: existing buildings, existing radiators/substations, small diameter house connection
- Innovations: Supervision ICT platform, Visualisation tools, Smart district heating network controller, Optimisation of building installation
Results - 1

Secondary return temperature apartment building in °C

- Controller not active at night time
- Main reduction of the return temperature
- Smart controller district heating networks
- Decentralised buffers

a) LT monitoring
b) RT optimisation
Results - 2

ICT platform for fault detection substations

Building simulations
Things to remember
Big thanks to

• You!
• All project partners for the great work and friendship
• Our project officers at CINEA for their support
• EHP for the organization of this final event
• My colleagues for all their contributions and insights into low temperature district heating networks and digitalization
Thank you!

Johan Desmedt, VITO/EnergyVille

Johan.Desmedt@vito.be